metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

cis-Dichlorido(1,3-dimesitylimidazolidin-2-ylidene)(2-formylbenzylidene- $\kappa^2 C$,O)ruthenium diethyl ether solvate

Christian Slugovc,^a Bernhard Perner,^a Franz Stelzer^a and Kurt Mereiter^b*

^aInstitute for Chemistry and Technology of Materials (ICTM), Graz University of Technology, Stremayrgasse 16, A-8010 Graz, Austria, and ^bInstitute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/ 164SC, A-1060 Vienna, Austria

Correspondence e-mail: kurt.mereiter@tuwien.ac.at

Received 4 January 2010; accepted 7 January 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; some non-H atoms missing; R factor = 0.029; wR factor = 0.067; data-to-parameter ratio = 27.9.

The title compound, $[RuCl_2(C_8H_6O)(C_{21}H_{26}N_2)]\cdot C_4H_{10}O$, contains a catalytically active ruthenium carbene complex of the 'second-generation Grubbs/Hoveyda' type with Ru in a square-pyramidal coordination, the apex of which is formed by the benzylidene carbene atom with Ru=C 1.827 (2) Å. The complex shows the uncommon *cis*, rather than the usual trans, arrangement of the two chloride ligands, with Ru-Cl bond lengths of 2.3548 (6) and 2.3600 (6) Å, and a Cl-Ru-Cl angle of $89.76 (2)^{\circ}$. This *cis* configuration is desirable for certain applications of ring-opening metathesis polymerization (ROMP) of strained cyclic olefins. The crystalline solid is a diethyl ether solvate, which is built up from a porous framework of Ru complexes held together by π - π stacking and $C-H\cdots Cl$ and $C-H\cdots O$ interactions. The disordered diethyl ether solvent molecules are contained in two independent infinite channels, which extend parallel to the caxis at x,y = 0,0 and $x,y = \frac{1}{2},\frac{1}{2}$ and have solvent-accessible void volumes of 695 and 464 Å³ per unit cell.

Related literature

For the synthesis and application of the title compound in ring-opening metathesis polymerization (ROMP), see: Slugovc *et al.* (2004); Burtscher *et al.* (2006). For thermally switchable initiators for olefin metathesis polymerization, see: Gstrein *et al.* (2007); Szadkowska & Grela (2008). For a recent authoritative review on ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts, see: Vougioukalakis & Grubbs (2010).

Experimental

Crystal data

 $\begin{bmatrix} \text{RuCl}_2(\text{C}_8\text{H}_6\text{O})(\text{C}_{21}\text{H}_{26}\text{N}_2) \end{bmatrix} - C_4\text{H}_{10}\text{O} \\ M_r = 670.66 \\ \text{Tetragonal, } P\overline{4}c2 \\ a = 19.8603 \text{ (4) } \text{\AA} \\ c = 15.6582 \text{ (7) } \text{\AA}$

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2003) T_{min} = 0.78, T_{max} = 0.86

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.067$ S = 1.018992 reflections 322 parameters H-atom parameters constrained

V = 6176.1 (3) Å³ Z = 8Mo K α radiation $\mu = 0.71$ mm⁻¹ T = 100 K $0.43 \times 0.25 \times 0.22$ mm

90504 measured reflections 8992 independent reflections 7306 reflections with $I > 2\sigma(I)$ $R_{int} = 0.058$

 $\begin{array}{l} \Delta\rho_{\rm max}=0.42~{\rm e}~{\rm \AA}^{-3}\\ \Delta\rho_{\rm min}=-0.31~{\rm e}~{\rm \AA}^{-3}\\ {\rm Absolute~structure:~Flack~(1983),}\\ 4175~{\rm Friedel~pairs}\\ {\rm Flack~parameter:~-0.02~(2)} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C29-H29C···Cl1	0.98	2.67	3.634 (3)	166
C39−H39C···Cl1	0.98	2.76	3.371 (3)	121
C37-H37A···O49	0.98	2.39	3.268 (3)	150
$C13-H13B\cdots Cl1^{i}$	0.99	2.94	3.395 (2)	109
$C14-H14A\cdots Cl1^{i}$	0.99	2.90	3.324 (3)	107
$C27 - H27A \cdot \cdot \cdot Cl2^{i}$	0.98	2.85	3.724 (3)	149
$C37 - H37C \cdot \cdot \cdot Cl2^{i}$	0.98	2.88	3.736 (3)	146
C25-H25···Cl1 ⁱⁱ	0.95	2.98	3.831 (3)	150
C29−H29A···Cl1 ⁱⁱ	0.98	2.71	3.673 (3)	169
C46-H46···Cl2 ⁱⁱⁱ	0.95	3.04	3.553 (2)	115
$C48-H48\cdots O49^{iii}$	0.95	2.50	3.014 (3)	114

Symmetry codes: (i) $x, -y + 1, z + \frac{1}{2}$; (ii) -y + 1, x, -z; (iii) -x, -y + 1, z.

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*, *SADABS* and *XPREP* (Bruker, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) and *PLATON* (Spek, 2009); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXL97*, *enCIFer* (Allen *et al.*, 2004), *PLATON* and *publCIF* (Westrip, 2010).

Financial support by the EC Project 'EuMet' (grant No. CPFP 211468-2) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5164).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burtscher, D., Perner, B., Mereiter, K. & Slugovc, C. (2006). J. Organomet. Chem. 691, 5423–5430.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gstrein, X., Burtscher, D., Szadkowska, A., Barbasiewicz, M., Stelzer, F., Grela, K. & Slugovc, C. (2007). J. Polym. Sci. Part A Polym. Chem. 45, 3494–3500.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Slugovc, C., Perner, B., Stelzer, F. & Mereiter, K. (2004). Organometallics, 23, 3622-3626.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Szadkowska, A. & Grela, K. (2008). Curr. Org. Chem. 12, 1631–1647.
- Vougioukalakis, G. C. & Grubbs, R. H. (2010). Chem. Rev. In the press, doi:10.1021/cr9002424.
- Westrip, S. P. (2010). publCIF. In preparation.

supplementary materials

Acta Cryst. (2010). E66, m154-m155 [doi:10.1107/S1600536810000826]

cis-Dichlorido(1,3-dimesitylimidazolidin-2-ylidene)(2-formylbenzylidene- $\kappa^2 C$,O)ruthenium diethyl ether solvate

C. Slugovc, B. Perner, F. Stelzer and K. Mereiter

Comment

The ruthenium complex RuCl₂(C₈H₆O)(C₂₁H₂₆N₂), which is the main constituent of the title compound, (I), was prepared by a carbene exchange reaction of (H₂IMes)(pyridine)₂(Cl)₂RuCHPh (1eq.; H₂IMes = 1,3-bismesityl-4,5-dihydroimidazol-2-ylidene) with 2-vinylbenzaldehyde (2 eq.) in CH₂Cl₂ at room temperature (Slugovc *et al.*, 2004). In sharp contrast to most of the ruthenium carbene complexes bearing two halides and neutral donor co-ligands (phosphines or N-heterocyclic carbenes), which exhibit a *trans* stereochemistry of the two halide ligands, the ruthenium complex of the title compound bears them in a *cis*-disposition of a square pyramidal coordination about Ru, the apex of which is formed by the benzylidene carbon C41 with a characteristically short Ru—C bond of 1.827 (2) Å whereas the bond to the N-heterocyclic carbene carbon C11 is longer by 0.077 Å (Fig. 1 and Table 1). It has been shown, that *cis*-isomer is thermodynamically favoured over its *trans*-dichlorido counterpart (Slugovc *et al.*, 2004). Ruthenium carbene complexes bearing a *cis*-dichlorido arrangement are particularly interesting, because they exhibit distinctly lower initiation rates in ring opening metathesis polymerization (ROMP) of strained cyclic olefins when compared to their *trans*-dichlorido counterparts (Gstrein *et al.*, 2007). This feature is used to design latent ROMP initiators and catalysts for *e.g.* ring closing metathesis at elevated temperatures (Szadkowska & Grela, 2008; Burtscher *et al.*, 2006; Vougioukalakis & Grubbs, 2010).

A view of the Ru complex in the title compound is presented in Fig. 1. Bond lengths and angles about Ru (Table 1) are in good agreement with the bis-dichloromethane solvate of the same complex, $RuCl_2(C_8H_6O)(C_{21}H_{26}N_2)$. 2CH₂Cl₂, which crystallizes in a moclinic lattice, space group $P2_1/c$, a = 12.1933 (6), b = 15.4520 (7), c = 19.3799 (9) Å, $\beta = 108.181$ (1)°, V = 3469.1 (3) Å³, Z = 4 (Slugovc *et al.*, 2004). Both complexes, in (I) and in the dichloromethane solvate, show similar conformations and are stabilized by significant intramolecular π - π stacking interactions between the 2-formylbenzylidene and the adjacent mesityl moiety with the shortest intramolecular π - π contacts of C41...C21 = 3.00 Å, C42...C22 = 3.40 Å, and C43···C24 = 3.45 Å in (I) and 2.99, 3.42, and 3.43 Å in the dichloromethane solvate. Moreover, both complexes show intramolecular C—H···O,Cl interactions, e.g. in (I) between C37 and Cl1 and and C29 and Cl1 (Fig. 1 and Table 2). In contrast to the dichloromethane solvate, where the Ru complexes do not show any intermolecular π - π -stacking but are held together mainly by C—H··· π and C—H···Cl intercations, intermolecular π - π -stacking is an important factor in the crystal structure of (I). Fig. 2 demonstrates that the structure of (I) contains columnar stacks of molecules extending along the c-axis and showing intermolecular π - π -stacking between the formylbenzylidene and one of the two mesityl groups [corresponding π - π -contacts are C44...C33(x,1 - y,-1/2 + z) = 3.59 Å and C43...C32(x,1 - y,-1/2 + z) = 3.81 Å]. Further π - π -stacking interactions arise from the mutual indentation of these stacks [corresponding π - π -contacts are C22···C24(y,x,1/2 -z = 3.82 Å, C23...C23(y,x,1/2 - z) = 3.64 Å and C24...C22(y,x,1/2 - z) = 3.82 Å]. Finally, the Ru-complexes are also held together by a larger number of weak intermolecular C—H···Cl,O interactions (Table 2). The result of all these interactions between the Ru complexes in (I) is a framework-like structure of tetragonal symmetry containing continuous channels which extend along the c-axis and contain the diethyl ether solvent molecules. As shown in Fig. 3, there are two different kinds of continuous channels in the this framework, both coinciding with the two crystallographically different sets of $\overline{4}$ axes of the

lattice. The larger channel in this framework is centered at x,y = 0,0 and has a minimal net-diameter in the (001)-projection of 5.6 Å and a solvent-accessible volume per unit cell of 695 Å³ (program *PLATON*; Spek, 2009). The smaller channel is centered at x,y = 1/2,1/2, has in the projection a minimal net-diameter of 4.2 Å and a solvent-accessible volume per unit cell of 464 Å³. As described in the experimental section, the diethyl ether solvent molecules inside these channels are disordered with about 5 molecules per unit cell in the large and about 3 molecules per unit cell in the small channel.

Experimental

The title compound was synthesized as described by Slugovc *et al.* (2004). It was then dissolved in a small amount of CHCl₃ and crystallized at room temperature by the vapour diffusion method using diethyl ether as the anti-solvent. Small green prismatic crystals were obtained, which remained stable at room temperature under oil for at least one hour. They were accompanied by some larger green crystals of different morphology, which after removal from the mother liquor crumbled by solvent loss within minutes and were probably a CHCl₃ containing solvate.

Refinement

All H atoms were placed in calculated positions and thereafter treated as riding. A torsional parameter was refined for each methyl group. $U_{iso}(H) = 1.2U_{eq}(C_{non-methyl})$ and $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$ were used. The diethyl ether solvent molecules, which reside in two different infinite channels extending about the 4 axes parallel to the *c*-axis were disordered. The presence of CHCl₃ was ruled out because solvent Fourier peaks did not exceed 2.2 e Å⁻³ in height. The solvent was initially approximated by 10 partly occupied carbon positions, which indicated the presence of about 4.7 diethyl ether molecules per unit cell in the larger and about 3.2 molecules per unit cell in the smaller channel. The solvent accessible void volumes of the two channels were 695 and 464 Å³ per unit cell (program *PLATON*; Spek, 2009). In the final refinement the solvent peaks were omitted and the contribution of the solvent to the structure factors was removed with procedure *SQUEEZE* of program *PLATON* (version-250809; Spek, 2009). Chemical formula and quantities derived thereof are given in the crystal data for an idealized solvent content of 1 molecule of diethyl ether per formula unit.

Figures

Fig. 1. The structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.

Fig. 2. Packing diagram of (I) viewed along the *b*-axis. The Ru complexes in the center are shown in space-filling representation in order to emphasize their column-like stacking along the *c*-axis and part of their π - π stacking interactions.

Fig. 3. Packing diagram of (I) viewed down the *c*-axis showing the two different kinds of channels which are occupied by disordered diethyl ether molecules.

cis-Dichlorido(1,3-dimesitylimidazolidin-2-ylidene)(2- formylbenzylidene- $\kappa^2 C$,O)ruthenium

Crystal data

$[RuCl_2(C_8H_6O)(C_{21}H_{26}N_2)] \cdot C_4H_{10}O$	$D_{\rm x} = 1.443 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 670.66$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Tetragonal, P4c2	Cell parameters from 8875 reflections
a = 19.8603 (4) Å	$\theta = 2.3 - 29.6^{\circ}$
c = 15.6582 (7) Å	$\mu = 0.71 \text{ mm}^{-1}$
$V = 6176.1 (3) \text{ Å}^3$	T = 100 K
Z = 8	Prism, green
F(000) = 2784	$0.43 \times 0.25 \times 0.22 \text{ mm}$

Data collection

Bruker SMART APEX CCD diffractometer	8992 independent reflections
Radiation source: normal-focus sealed tube	7306 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.058$
φ and ω scans	$\theta_{\text{max}} = 30.0^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2003)	$h = -27 \rightarrow 27$
$T_{\min} = 0.78, T_{\max} = 0.86$	$k = -27 \rightarrow 27$
90504 measured reflections	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters constrained
$wR(F^2) = 0.067$	$w = 1/[\sigma^2(F_0^2) + (0.0309P)^2 + 1.9302P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
8992 reflections	$\Delta \rho_{max} = 0.42 \text{ e} \text{ Å}^{-3}$
322 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
0 restraints	Absolute structure: Flack (1983), 4175 Friedel pairs

Primary atom site location: structure-invariant direct Flack parameter: -0.02 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ru	0.163541 (9)	0.497964 (9)	0.046582 (10)	0.02129 (4)
Cl1	0.27041 (3)	0.53239 (3)	-0.00175 (4)	0.02852 (11)
Cl2	0.11254 (3)	0.57173 (3)	-0.05230 (4)	0.03066 (12)
C11	0.20523 (12)	0.48129 (11)	0.16118 (14)	0.0236 (5)
N12	0.23047 (10)	0.42655 (10)	0.19933 (12)	0.0262 (4)
C13	0.25911 (14)	0.44070 (13)	0.28464 (16)	0.0346 (6)
H13A	0.3083	0.4328	0.2854	0.042*
H13B	0.2376	0.4125	0.3291	0.042*
C14	0.24273 (15)	0.51526 (12)	0.29779 (18)	0.0345 (6)
H14A	0.2094	0.5216	0.3442	0.041*
H14B	0.2838	0.5415	0.3111	0.041*
N15	0.21431 (10)	0.53461 (9)	0.21391 (12)	0.0262 (4)
C21	0.23113 (12)	0.35894 (11)	0.16561 (14)	0.0253 (5)
C22	0.17748 (12)	0.31643 (12)	0.18503 (14)	0.0269 (5)
C23	0.17985 (12)	0.25113 (12)	0.15293 (15)	0.0288 (5)
H23	0.1435	0.2214	0.1646	0.035*
C24	0.23375 (13)	0.22794 (12)	0.10419 (16)	0.0302 (5)
C25	0.28701 (12)	0.27169 (12)	0.08777 (16)	0.0296 (5)
H25	0.3243	0.2562	0.0553	0.035*
C26	0.28676 (12)	0.33789 (12)	0.11807 (15)	0.0285 (5)
C27	0.11903 (14)	0.33958 (13)	0.23832 (17)	0.0348 (6)
H27A	0.1354	0.3547	0.2941	0.052*
H27B	0.0874	0.3022	0.2462	0.052*
H27C	0.0962	0.3769	0.2094	0.052*
C28	0.23392 (14)	0.15699 (12)	0.06930 (18)	0.0359 (6)
H28A	0.2786	0.1464	0.0464	0.054*
H28B	0.2004	0.1532	0.0237	0.054*
H28C	0.2229	0.1253	0.1152	0.054*
C29	0.34414 (13)	0.38489 (13)	0.09885 (18)	0.0350 (6)
H29A	0.3799	0.3602	0.0691	0.052*
H29B	0.3619	0.4033	0.1524	0.052*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H29C	0.3281	0.4218	0.0626	0.052*
C31	0.18137 (13)	0.59830 (11)	0.20283 (15)	0.0275 (5)
C32	0.11424 (13)	0.60492 (12)	0.22833 (15)	0.0303 (5)
C33	0.08306 (13)	0.66723 (13)	0.21854 (17)	0.0339 (6)
H33	0.0371	0.6719	0.2344	0.041*
C34	0.11702 (15)	0.72254 (13)	0.18645 (17)	0.0355 (6)
C35	0.18389 (14)	0.71537 (13)	0.16534 (17)	0.0361 (6)
H35	0.2076	0.7535	0.1447	0.043*
C36	0.21842 (14)	0.65417 (13)	0.17305 (16)	0.0317 (5)
C37	0.07556 (14)	0.54747 (13)	0.26922 (17)	0.0359 (6)
H37A	0.0719	0.5101	0.2286	0.054*
H37B	0.0304	0.5630	0.2849	0.054*
H37C	0.0994	0.5322	0.3205	0.054*
C38	0.08123 (17)	0.78913 (15)	0.1766 (2)	0.0498 (8)
H38A	0.1139	0.8259	0.1818	0.075*
H38B	0.0470	0.7936	0.2213	0.075*
H38C	0.0596	0.7911	0.1204	0.075*
C39	0.29151 (14)	0.64977 (14)	0.15142 (18)	0.0384 (6)
H39A	0.3106	0.6089	0.1767	0.058*
H39B	0.3150	0.6893	0.1741	0.058*
H39C	0.2969	0.6482	0.0892	0.058*
C41	0.17781 (11)	0.41460 (11)	0.00063 (15)	0.0247 (4)
H41	0.2229	0.4046	-0.0152	0.030*
C42	0.12846 (11)	0.36162 (11)	-0.01471 (14)	0.0237 (4)
C43	0.14811 (12)	0.30477 (12)	-0.06108 (16)	0.0291 (5)
H43	0.1929	0.3017	-0.0820	0.035*
C44	0.10326 (13)	0.25294 (13)	-0.07703 (17)	0.0349 (6)
H44	0.1178	0.2150	-0.1091	0.042*
C45	0.03799 (13)	0.25513 (12)	-0.0475 (2)	0.0382 (6)
H45	0.0079	0.2189	-0.0584	0.046*
C46	0.01669 (12)	0.31127 (12)	-0.00132 (19)	0.0329 (5)
H46	-0.0283	0.3135	0.0191	0.039*
C47	0.06097 (12)	0.36413 (11)	0.01500 (15)	0.0254 (5)
C48	0.03578 (12)	0.42013 (11)	0.06446 (14)	0.0256 (5)
H48	-0.0097	0.4179	0.0830	0.031*
O49	0.06864 (8)	0.47089 (8)	0.08469 (10)	0.0247 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ru	0.02463 (9)	0.01835 (8)	0.02089 (6)	0.00016 (7)	-0.00329 (7)	0.00037 (7)
Cl1	0.0282 (3)	0.0274 (3)	0.0299 (3)	-0.0055 (2)	-0.0025 (2)	0.0014 (2)
Cl2	0.0356 (3)	0.0285 (3)	0.0279 (2)	0.0077 (2)	-0.0004 (2)	0.0049 (2)
C11	0.0246 (11)	0.0228 (10)	0.0234 (11)	-0.0010 (8)	-0.0020 (8)	0.0002 (8)
N12	0.0320 (10)	0.0237 (10)	0.0230 (8)	0.0054 (8)	-0.0083 (8)	-0.0013 (8)
C13	0.0451 (15)	0.0300 (13)	0.0288 (13)	0.0075 (11)	-0.0136 (11)	-0.0045 (10)
C14	0.0486 (16)	0.0283 (14)	0.0265 (11)	0.0037 (10)	-0.0150 (12)	-0.0027 (11)
N15	0.0354 (11)	0.0215 (10)	0.0218 (9)	-0.0018 (8)	-0.0085 (8)	-0.0018 (7)

supplementary materials

C21	0.0306 (12)	0.0206 (11)	0.0248 (11)	0.0079 (9)	-0.0075 (9)	-0.0015 (9)
C22	0.0309 (12)	0.0255 (11)	0.0243 (11)	0.0063 (10)	-0.0056 (9)	0.0027 (9)
C23	0.0302 (12)	0.0252 (12)	0.0309 (12)	0.0012 (10)	-0.0049 (10)	0.0026 (9)
C24	0.0339 (13)	0.0264 (12)	0.0301 (12)	0.0075 (10)	-0.0114 (10)	-0.0025 (10)
C25	0.0271 (12)	0.0280 (12)	0.0336 (13)	0.0081 (10)	-0.0057 (10)	-0.0046 (10)
C26	0.0256 (12)	0.0297 (12)	0.0304 (12)	0.0064 (9)	-0.0070 (9)	0.0008 (10)
C27	0.0401 (15)	0.0304 (14)	0.0341 (13)	0.0037 (11)	0.0033 (11)	0.0010 (10)
C28	0.0401 (15)	0.0213 (12)	0.0463 (15)	0.0069 (10)	-0.0076 (12)	-0.0069 (10)
C29	0.0273 (13)	0.0310 (13)	0.0466 (15)	0.0039 (10)	-0.0056 (11)	-0.0010 (12)
C31	0.0368 (13)	0.0207 (10)	0.0251 (10)	-0.0017 (9)	-0.0081 (10)	-0.0005 (9)
C32	0.0367 (14)	0.0260 (12)	0.0282 (12)	-0.0048 (10)	-0.0084 (10)	-0.0026 (9)
C33	0.0305 (13)	0.0312 (13)	0.0400 (15)	0.0000 (10)	-0.0047 (11)	-0.0042 (11)
C34	0.0450 (16)	0.0234 (12)	0.0381 (14)	0.0018 (11)	-0.0060 (12)	-0.0022 (10)
C35	0.0461 (16)	0.0215 (12)	0.0406 (14)	-0.0065 (11)	-0.0035 (12)	0.0008 (10)
C36	0.0393 (14)	0.0267 (12)	0.0290 (12)	-0.0050 (11)	-0.0072 (11)	-0.0034 (10)
C37	0.0401 (15)	0.0320 (14)	0.0356 (13)	-0.0036 (12)	0.0013 (11)	-0.0002 (11)
C38	0.0548 (19)	0.0303 (15)	0.064 (2)	0.0097 (13)	0.0022 (16)	0.0049 (14)
C39	0.0403 (15)	0.0334 (14)	0.0416 (14)	-0.0077 (11)	-0.0017 (12)	-0.0058 (11)
C41	0.0244 (10)	0.0235 (10)	0.0261 (11)	0.0015 (8)	-0.0037 (9)	0.0015 (9)
C42	0.0253 (11)	0.0220 (10)	0.0238 (10)	-0.0001 (9)	-0.0036 (8)	0.0035 (8)
C43	0.0281 (11)	0.0271 (12)	0.0320 (12)	0.0035 (9)	-0.0020 (10)	-0.0044 (10)
C44	0.0342 (14)	0.0253 (12)	0.0453 (14)	0.0042 (10)	-0.0057 (11)	-0.0082 (10)
C45	0.0324 (13)	0.0256 (12)	0.0566 (16)	-0.0024 (10)	-0.0102 (14)	-0.0079 (12)
C46	0.0271 (12)	0.0255 (12)	0.0461 (13)	-0.0006 (9)	-0.0040 (11)	-0.0006 (11)
C47	0.0272 (11)	0.0201 (10)	0.0289 (11)	0.0025 (8)	-0.0027 (9)	0.0024 (9)
C48	0.0240 (11)	0.0246 (11)	0.0282 (12)	0.0025 (9)	0.0000 (9)	0.0016 (9)
O49	0.0252 (8)	0.0219 (8)	0.0271 (8)	0.0016 (6)	-0.0018 (6)	0.0005 (6)

Geometric parameters (Å, °)

Ru—C41	1.827 (2)	C31—C32	1.398 (4)
Ru—C11	2.004 (2)	C31—C36	1.411 (3)
Ru—O49	2.0487 (16)	C32—C33	1.392 (3)
Ru—Cl1	2.3548 (6)	C32—C37	1.517 (4)
Ru—Cl2	2.3600 (6)	C33—C34	1.383 (4)
C11—N12	1.338 (3)	С33—Н33	0.9500
C11—N15	1.355 (3)	C34—C35	1.376 (4)
N12—C21	1.443 (3)	C34—C38	1.509 (4)
N12-C13	1.479 (3)	C35—C36	1.401 (4)
C13—C14	1.530 (3)	С35—Н35	0.9500
C13—H13A	0.9900	C36—C39	1.493 (4)
С13—Н13В	0.9900	С37—Н37А	0.9800
C14—N15	1.480 (3)	С37—Н37В	0.9800
C14—H14A	0.9900	С37—Н37С	0.9800
C14—H14B	0.9900	C38—H38A	0.9800
N15—C31	1.435 (3)	C38—H38B	0.9800
C21—C22	1.393 (3)	C38—H38C	0.9800
C21—C26	1.396 (3)	С39—Н39А	0.9800
C22—C23	1.392 (3)	С39—Н39В	0.9800

G00 G05	1 500 (0)	600 H006	
C22—C27	1.502 (3)	С39—Н39С	0.9800
C23—C24	1.393 (3)	C41—C42	1.458 (3)
С23—Н23	0.9500	C41—H41	0.9500
C24—C25	1.393 (4)	C42—C43	1.398 (3)
C24—C28	1.511 (3)	C42—C47	1.420 (3)
C25—C26	1.398 (3)	C43—C44	1.384 (3)
C25—H25	0.9500	C43—H43	0.9500
C26—C29	1.504 (4)	C44—C45	1.377 (4)
С27—Н27А	0.9800	C44—H44	0.9500
С27—Н27В	0.9800	C45—C46	1.395 (4)
С27—Н27С	0.9800	C45—H45	0.9500
C28—H28A	0.9800	C46—C47	1.393 (3)
C28—H28B	0.9800	С46—Н46	0.9500
C28—H28C	0.9800	C47—C48	1.445 (3)
С29—Н29А	0.9800	C48—O49	1.242 (3)
С29—Н29В	0.9800	C48—H48	0.9500
С29—Н29С	0.9800		
C41—Ru—C11	97.98 (9)	С26—С29—Н29С	109.5
C41—Ru—O49	91.12 (8)	H29A—C29—H29C	109.5
C11—Ru—O49	94.35 (8)	H29B—C29—H29C	109.5
C41—Ru—Cl1	89.81 (7)	C32—C31—C36	121.2 (2)
C11—Ru—Cl1	87.90 (7)	C32—C31—N15	118.9 (2)
O49—Ru—C11	177.42 (5)	C36—C31—N15	119.7 (2)
C41— Ru — $C12$	111.76 (7)	C33—C32—C31	118.4 (2)
C_{11} R_{11} C_{12}	150 16 (7)	$C_{33} - C_{32} - C_{37}$	110.1(2) 119.3(2)
O49— Ru — $C12$	87 66 (5)	$C_{31} - C_{32} - C_{37}$	119.3(2) 122.2(2)
C_{11} Ru C_{12}	89.76 (2)	C_{34} C_{33} C_{32}	122.2(2) 121.9(2)
N12_C11_N15	108.25(19)	C34_C33_H33	119.0
N12_C11Ru	133 55 (16)	C32_C33_H33	119.0
N12—C11—Ru	118 14 (16)	$C_{32} = C_{33} = 1133$	119.0 118.4.(2)
$\frac{11}{1000} = \frac{11}{1000} = $	126 60 (18)	$C_{35} = C_{34} = C_{35}$	110.4(2)
$C_{11} = N_{12} = C_{21}$	120.00(18) 112 14 (10)	$C_{33} = C_{34} = C_{38}$	121.4(3)
C11 - N12 - C13	113.14(19) 120.26(19)	$C_{24} = C_{25} = C_{26}$	120.2(3)
C21—N12—C13	120.20(18)	$C_{34} = C_{35} = C_{30}$	122.8 (2)
N12-C13-C14	102.93 (18)	C34—C35—H35	118.6
N12	111.2	C36—C35—H35	118.6
С14—С13—Н13А	111.2		117.1(2)
N12—C13—H13B	111.2	C35—C36—C39	120.5 (2)
С14—С13—Н13В	111.2	C31—C36—C39	122.4 (2)
H13A—C13—H13B	109.1	С32—С37—Н37А	109.5
N15—C14—C13	102.29 (19)	С32—С37—Н37В	109.5
N15—C14—H14A	111.3	Н37А—С37—Н37В	109.5
C13—C14—H14A	111.3	С32—С37—Н37С	109.5
N15-C14-H14B	111.3	Н37А—С37—Н37С	109.5
C13—C14—H14B	111.3	Н37В—С37—Н37С	109.5
H14A—C14—H14B	109.2	С34—С38—Н38А	109.5
C11—N15—C31	123.7 (2)	C34—C38—H38B	109.5
C11—N15—C14	112.87 (19)	H38A—C38—H38B	109.5
C31—N15—C14	120.67 (18)	C34—C38—H38C	109.5
C22—C21—C26	122.7 (2)	H38A—C38—H38C	109.5

supplementary materials

C22—C21—N12	118.5 (2)	H38B—C38—H38C	109.5
C26—C21—N12	118.8 (2)	С36—С39—Н39А	109.5
C23—C22—C21	117.4 (2)	С36—С39—Н39В	109.5
C23—C22—C27	120.8 (2)	H39A—C39—H39B	109.5
C21—C22—C27	121.8 (2)	С36—С39—Н39С	109.5
C22—C23—C24	122.1 (2)	H39A—C39—H39C	109.5
С22—С23—Н23	118.9	Н39В—С39—Н39С	109.5
C24—C23—H23	118.9	C42—C41—Ru	127.91 (17)
C25—C24—C23	118.6 (2)	C42—C41—H41	116.0
C25—C24—C28	120.9 (2)	Ru—C41—H41	116.0
C23—C24—C28	120.5 (2)	C43—C42—C47	117.5 (2)
C24—C25—C26	121.4 (2)	C43—C42—C41	118.7 (2)
С24—С25—Н25	119.3	C47—C42—C41	123.7 (2)
С26—С25—Н25	119.3	C44—C43—C42	121.0 (2)
C21—C26—C25	117.7 (2)	C44—C43—H43	119.5
C21—C26—C29	121.4 (2)	C42—C43—H43	119.5
C25—C26—C29	120.9 (2)	C45—C44—C43	121.5 (2)
С22—С27—Н27А	109.5	C45—C44—H44	119.3
С22—С27—Н27В	109.5	C43—C44—H44	119.3
H27A—C27—H27B	109.5	C44—C45—C46	119.0 (2)
С22—С27—Н27С	109.5	C44—C45—H45	120.5
H27A—C27—H27C	109.5	C46—C45—H45	120.5
H27B—C27—H27C	109.5	C47—C46—C45	120.4 (2)
C24—C28—H28A	109.5	C47—C46—H46	119.8
C24—C28—H28B	109.5	C45—C46—H46	119.8
H28A—C28—H28B	109.5	C46—C47—C42	120.6 (2)
C24—C28—H28C	109.5	C46—C47—C48	117.4 (2)
H28A—C28—H28C	109.5	C42—C47—C48	122.0 (2)
H28B-C28-H28C	109.5	O49—C48—C47	125.4 (2)
С26—С29—Н29А	109.5	O49—C48—H48	117.3
С26—С29—Н29В	109.5	C47—C48—H48	117.3
H29A—C29—H29B	109.5	C48—O49—Ru	128.47 (15)
C41—Ru—C11—N12	-5.8 (3)	C14—N15—C31—C32	-81.5 (3)
O49—Ru—C11—N12	85.9 (2)	C11—N15—C31—C36	-106.7 (3)
Cl1—Ru—C11—N12	-95.3 (2)	C14—N15—C31—C36	93.5 (3)
Cl2—Ru—C11—N12	178.85 (15)	C36—C31—C32—C33	4.1 (4)
C41—Ru—C11—N15	170.79 (18)	N15-C31-C32-C33	179.0 (2)
O49—Ru—C11—N15	-97.46 (18)	C36—C31—C32—C37	-173.4 (2)
Cl1—Ru—C11—N15	81.27 (17)	N15-C31-C32-C37	1.4 (3)
Cl2—Ru—C11—N15	-4.6 (3)	C31—C32—C33—C34	-1.6 (4)
N15-C11-N12-C21	179.8 (2)	C37—C32—C33—C34	176.1 (2)
Ru—C11—N12—C21	-3.4 (4)	C32—C33—C34—C35	-1.2 (4)
N15-C11-N12-C13	0.3 (3)	C32—C33—C34—C38	179.8 (3)
Ru—C11—N12—C13	177.2 (2)	C33—C34—C35—C36	1.6 (4)
C11—N12—C13—C14	4.1 (3)	C38—C34—C35—C36	-179.5 (3)
C21—N12—C13—C14	-175.4 (2)	C34—C35—C36—C31	0.9 (4)
N12-C13-C14-N15	-6.4 (3)	C34—C35—C36—C39	-178.3 (2)
N12-C11-N15-C31	-166.3 (2)	C32—C31—C36—C35	-3.7 (4)
Ru—C11—N15—C31	16.3 (3)	N15-C31-C36-C35	-178.6 (2)

N12-C11-N15-C14	-5.1 (3)	C32—C31—C36—C39	175.4 (2)
Ru—C11—N15—C14	177.51 (17)	N15-C31-C36-C39	0.6 (4)
C13-C14-N15-C11	7.4 (3)	C11—Ru—C41—C42	106.4 (2)
C13-C14-N15-C31	169.2 (2)	O49—Ru—C41—C42	11.9 (2)
C11—N12—C21—C22	-91.5 (3)	Cl1—Ru—C41—C42	-165.7 (2)
C13—N12—C21—C22	87.9 (3)	Cl2—Ru—C41—C42	-76.1 (2)
C11—N12—C21—C26	91.2 (3)	Ru—C41—C42—C43	171.49 (18)
C13—N12—C21—C26	-89.4 (3)	Ru—C41—C42—C47	-8.6 (3)
C26—C21—C22—C23	-1.8 (3)	C47—C42—C43—C44	-0.2 (3)
N12-C21-C22-C23	-178.94 (19)	C41—C42—C43—C44	179.7 (2)
C26—C21—C22—C27	178.3 (2)	C42—C43—C44—C45	-0.5 (4)
N12—C21—C22—C27	1.1 (3)	C43—C44—C45—C46	0.7 (4)
C21—C22—C23—C24	0.9 (3)	C44—C45—C46—C47	-0.3 (4)
C27—C22—C23—C24	-179.2 (2)	C45—C46—C47—C42	-0.3 (4)
C22—C23—C24—C25	0.4 (4)	C45—C46—C47—C48	-179.0 (2)
C22—C23—C24—C28	-179.0 (2)	C43—C42—C47—C46	0.5 (3)
C23—C24—C25—C26	-0.9 (4)	C41—C42—C47—C46	-179.3 (2)
C28—C24—C25—C26	178.6 (2)	C43—C42—C47—C48	179.2 (2)
C22-C21-C26-C25	1.4 (3)	C41—C42—C47—C48	-0.7 (3)
N12-C21-C26-C25	178.5 (2)	C46—C47—C48—O49	179.8 (2)
C22—C21—C26—C29	-179.5 (2)	C42—C47—C48—O49	1.1 (4)
N12-C21-C26-C29	-2.4 (3)	C47—C48—O49—Ru	7.0 (3)
C24—C25—C26—C21	0.0 (3)	C41—Ru—O49—C48	-11.70 (19)
C24—C25—C26—C29	-179.1 (2)	C11—Ru—O49—C48	-109.79 (19)
C11—N15—C31—C32	78.3 (3)	Cl2—Ru—O49—C48	100.04 (18)

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C29—H29C…Cl1	0.98	2.67	3.634 (3)	166.
C39—H39C…Cl1	0.98	2.76	3.371 (3)	121.
С37—Н37А…О49	0.98	2.39	3.268 (3)	150.
C13—H13B···Cl1 ⁱ	0.99	2.94	3.395 (2)	109.
C14—H14A····Cl1 ⁱ	0.99	2.90	3.324 (3)	107.
C27—H27A····Cl2 ⁱ	0.98	2.85	3.724 (3)	149.
C37—H37C···Cl2 ⁱ	0.98	2.88	3.736 (3)	146.
C25—H25···Cl1 ⁱⁱ	0.95	2.98	3.831 (3)	150.
C29—H29A····Cl1 ⁱⁱ	0.98	2.71	3.673 (3)	169.
C46—H46···Cl2 ⁱⁱⁱ	0.95	3.04	3.553 (2)	115.
C48—H48…O49 ⁱⁱⁱ	0.95	2.50	3.014 (3)	114.

Symmetry codes: (i) *x*, -*y*+1, *z*+1/2; (ii) -*y*+1, *x*, -*z*; (iii) -*x*, -*y*+1, *z*.

